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CP Violation in Ko → ππ

CP Violation in the neutral kaon system is dominated by states mixing . 
Mass eigenstates (KS and KL) are not pure CP eigenstates  (K1 and K2) : 

KS =   K1 + ε K2 (K1 : CP= +1, → ππ dominantly)
KL   =   K2 + ε K1 (K2 : CP= -1, → πππ,πlν ...)

Indirect CP Violation, or ε = ( 2.28 ± 0.02 ) 10-3 , is the main cause 
of KL → ππ decays

CP Violation in the neutral kaon system is dominated by states mixing . 
Mass eigenstates (KS and KL) are not pure CP eigenstates  (K1 and K2) : 

KS =   K1 + ε K2 (K1 : CP= +1, → ππ dominantly)
KL   =   K2 + ε K1 (K2 : CP= -1, → πππ,πlν ...)

Indirect CP Violation, or ε = ( 2.28 ± 0.02 ) 10-3 , is the main cause 
of KL → ππ decays

Is there also a component of Direct CP Violation in the decay
process itself?   That is,  are there decays:     K2 → ππ ?
This would imply: A( K0 → ππ )2 ≠ A( K0 → ππ)2

This requires the combination of two amplitudes, with different 
phases in the weak couplings, and different final state phases due to 
strong interaction between the decay products. 
In the decay probability, the interference term would generate Direct 
CP Violation  (because the weak phases change sign between CP 
conjugate states)

Is there also a component of Direct CP Violation in the decay
process itself?   That is,  are there decays:     K2 → ππ ?
This would imply: A( K0 → ππ )2 ≠ A( K0 → ππ)2

This requires the combination of two amplitudes, with different 
phases in the weak couplings, and different final state phases due to 
strong interaction between the decay products. 
In the decay probability, the interference term would generate Direct 
CP Violation  (because the weak phases change sign between CP 
conjugate states)
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Direct CP Violation
ππ from  K0  can have two Isospin (I = 0 or 2) amplitudes:  A0 , A2

⇒ Direct CP Violation possible, in principle, in K0 → ππ
⇒ Since π0π0 and π+π- select different I amplitudes, we identify 
DCP violation comparing the decay modes:

A(KL → π+ π- ) / A(KS → π+ π- ) = η + − = ε  + ε′
A(KL → π0 π0 ) / A(KS → π0 π0 ) = η 0 0 = ε  - 2 ε′

(the numerical factors +1 and –2 come from Clebsch-Gordan 
coefficients between ππ and Isospin eigenstates)

(Instead indirect CP violation - ε - does not distinguish 
the two final states, because it occurs equally in KL and KS

via the amplitude K1 → ππ)

ππ from  K0  can have two Isospin (I = 0 or 2) amplitudes:  A0 , A2

⇒ Direct CP Violation possible, in principle, in K0 → ππ
⇒ Since π0π0 and π+π- select different I amplitudes, we identify 
DCP violation comparing the decay modes:

A(KL → π+ π- ) / A(KS → π+ π- ) = η + − = ε  + ε′
A(KL → π0 π0 ) / A(KS → π0 π0 ) = η 0 0 = ε  - 2 ε′

(the numerical factors +1 and –2 come from Clebsch-Gordan 
coefficients between ππ and Isospin eigenstates)

(Instead indirect CP violation - ε - does not distinguish 
the two final states, because it occurs equally in KL and KS

via the amplitude K1 → ππ)

 ε′ :   direct CP violation parameter, could be written as:
 ε′ = i e i(δ2-δ0) (ReA2/ReA0) (ImA2/ReA2-ImA0/ReA0)/√2
 (it vanishes if A2 is zero or if it has the same phase of A0)

 ε′ :   direct CP violation parameter, could be written as:
 ε′ = i e i(δ2-δ0) (ReA2/ReA0) (ImA2/ReA2-ImA0/ReA0)/√2
 (it vanishes if A2 is zero or if it has the same phase of A0)
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Measured quantity

Experimental observable :

Γ(KL → π0π0 ) Γ(KS → π+π- ) 
R =  = 1− 6 Re(ε′/ ε )

Γ(KS → π0π0 ) Γ(KL → π+π- )

This is to first order in |ε′/ ε|,  which is a correct 
approximation, since  |A2|<<|A0|, 
in agreement with the ∆I=1/2 rule of weak decays
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Standard Model predictions

Indirect violation through  K0-K0

coupling ⇒ ε parameter

Direct violation through decay 
penguin diagrams  ⇒ ε′ parameter

Typical theoretical predictions : ε′ / ε ≈ few 10-4 to ≈ 2. 10-3

Improvements from forthcoming lattice QCD computations (?)
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Current experimental situation of ε′ / ε

Previous generation experiments (results in early 90’s):
NA31 (CERN)            (23.0 ± 6.5) x 10-4

E731  (Fermilab)       (7.4 ± 5.9) x 10-4

( ε′ / ε ) ≠ 0  ? Not clear  ⇒ New generation of experiments 

Previous generation experiments (results in early 90’s):
NA31 (CERN)            (23.0 ± 6.5) x 10-4

E731  (Fermilab)       (7.4 ± 5.9) x 10-4

( ε′ / ε ) ≠ 0  ? Not clear  ⇒ New generation of experiments 

⇒ Direct CP violation seems established
with world average   (19.2± 2.5) x 10-4 but χ2/ndf = 10.4/3
Need final results from NA48 and KTEV to clarify the situation.

⇒ Direct CP violation seems established
with world average   (19.2± 2.5) x 10-4 but χ2/ndf = 10.4/3
Need final results from NA48 and KTEV to clarify the situation.

First published results two years ago :
KTEV (Fermilab)        (28.0 ± 4.1) x 10-4 (part of 96-97 data) 
NA48 (CERN)            (18.5 ± 7.3) x 10-4 ( 97 data ) 
Preliminary NA48 result on 98 data last year :

(14.0 ± 4.3) x 10-4 ( combined with 97 data ) 

First published results two years ago :
KTEV (Fermilab)        (28.0 ± 4.1) x 10-4 (part of 96-97 data) 
NA48 (CERN)            (18.5 ± 7.3) x 10-4 ( 97 data ) 
Preliminary NA48 result on 98 data last year :

(14.0 ± 4.3) x 10-4 ( combined with 97 data ) 
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NA48 method and setup
Measure the double ratio:

BR(KL → π0π0 ) BR(KS → π+π- ) 
R=  = 1− 6 Re(ε′ / ε )

BR(KS → π0π0 ) BR(KL → π+π- )
by counting the number of decays in two 
beams of KL and KS

Measure the double ratio:
BR(KL → π0π0 ) BR(KS → π+π- ) 

R=  = 1− 6 Re(ε′ / ε )
BR(KS → π0π0 ) BR(KL → π+π- )

by counting the number of decays in two 
beams of KL and KS

Need  > 3. 106 KL → π0π0 for stat. error on  R < 0.1%
and look for cancellation of systematic effects related to 

differences in acceptance, efficiency, backgrounds:
(lifetimes are very different, KL decays are rare and are affected by 

background)

Need  > 3. 106 KL → π0π0 for stat. error on  R < 0.1%
and look for cancellation of systematic effects related to 

differences in acceptance, efficiency, backgrounds:
(lifetimes are very different, KL decays are rare and are affected by 

background)

KS → π+π- :   69% KL → π+π- :    0.2%

KS → π0π0 :   31% KL → π0π0 :    0.1%

KS → π+π- :   69% KL → π+π- :    0.2%

KS → π0π0 :   31% KL → π0π0 :    0.1%

cτS =   2.67 cm
cτL =  15.5 m
cτS =   2.67 cm
cτL =  15.5 m
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NA48 method and setup

Strategy to minimize systematic effects:Strategy to minimize systematic effects:Strategy to minimize systematic effects:

the 4 modes are collected concurrently
⇒ cancellation of fluxes, dead times, inefficiencies, 
accidental rates

the 4 modes are collected concurrently
⇒ cancellation of fluxes, dead times, inefficiencies, 
accidental rates

use same decay regions for all modes, apply lifetime 
weighting to equalize distribution of KS and KL decay 
positions  
⇒ cancellation of detector acceptance effects

use same decay regions for all modes, apply lifetime 
weighting to equalize distribution of KS and KL decay 
positions  
⇒ cancellation of detector acceptance effects

use quasi-homogeneous liquid Krypton calorimeter to 
detect π0π0 and magnetic spectrometer for π+π-

⇒ optimize resolution, uniformity, linearity and stability

use quasi-homogeneous liquid Krypton calorimeter to 
detect π0π0 and magnetic spectrometer for π+π-

⇒ optimize resolution, uniformity, linearity and stability
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NA48 simultaneous and collinear KL and KS beams

KS and KL beams are distinguished by proton tagging upstream of the KS target
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The Tagger 

2x12 thin scintillator foils • Proton rate  ≈ 30MHz → split 
the intensity between foils, 
readout by Flash ADC 8 bits at 
960 MHz

⇒ time resolution : 140 ps

⇒ double pulse separation : 4 ns
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The AKS counter

• Defines beginning of 
decay region for π+π-

and π0π0 KS decays
• Plastic scintillation 

counters following a 
• Photon converter :

– iridium crystal 3mm 
thick , (22 ± 5 ) mm 
upstream of counter

⇒ 1.79 X0 instead of 
0.98 X0 for amorphous 
iridium 

KS beam



Corfu 2001 NA48 / 13

NA48 detector

• Muon veto and hadron
calorimeter 
(background, trigger)

• Quasi homogeneous 
liquid krypton 
calorimeter to detect 
π0π0 events

• Scintillation 
hodoscope (trigger 
and timing π+π-)

• Magnetic 
spectrometer to 
detect π+π- events

1 m

Decay products
From K decays
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Magnetic spectrometer

ONE DRIFT 
CHAMBER

• 4 drift chambers  
• Space point resolution 

≈100 µm ;

σ(P)/P ≅ 0.5 %  ⊕ 0.009  P[GeV/c]%

(≅ 1% for 100 GeV/c track momentum)
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LKr electromagnetic calorimeter

• Quasi-homogeneous 
detector
– 10 m3 liquid krypton  

(120 K);  
– (X0 = 4.7 cm,  

RM = 6.1 cm)

• 13,212 cells
– granularity 2×2 cm2

– Depth 1.25 m 
(27 X0)
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LKr electromagnetic calorimeter
• Projective geometry pointing to decay region ( ∼ 114 

m upstream)
• Accordion geometry ( ± 48 mrad )
• Initial current read-out
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LKr energy resolution

• Use large sample of 
KL→ π e υ to study 
Lkr energy response. 
• Compare p from 
spectrometer and E 
from calorimeter.

σ(E)/E ≅ 3.2 % / √E ⊕ 0.09 /E ⊕ 0.42%
(E in GeV)

(better than 1% for 25 GeV photons)
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Trigger, reconstruction and analysis

Beware:
All the corrections and uncertainties 

are quoted as applied to  R:

When referred to ( ε′ / ε ) , they need to 
be multiplied by -1/6
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π+π- trigger
• Level 1:

– Hodoscope + total energy + hits in drift chambers 
– Output rate 100 kHz, dead time 0.5 %
– Efficiency (99.535 ± 0.011)%  (evaluated from 

comparison of trigger components)
• Level 2:

– Fast track reconstruction (100µs) from processors 
farm

– Cut on vertex position and invariant mass
– Output rate 2kHz, dead time 1.1%
– Efficiency (98.353 ± 0.022)%  (from Level 1 triggers)

π+π- trigger
• Level 1:

– Hodoscope + total energy + hits in drift chambers 
– Output rate 100 kHz, dead time 0.5 %
– Efficiency (99.535 ± 0.011)%  (evaluated from 

comparison of trigger components)
• Level 2:

– Fast track reconstruction (100µs) from processors 
farm

– Cut on vertex position and invariant mass
– Output rate 2kHz, dead time 1.1%
– Efficiency (98.353 ± 0.022)%  (from Level 1 triggers)

Trigger
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e and µ rejection
• E(LKr)/p < 0.8

• no hits in µ detector

Kinematical cuts
• Mππ - MK < 3 ⋅ σM , (σM≈2.5 MeV)
• P⊥′2 < 200 (MeV/c)2

transverse momentum of π+π- to the 
line between target and Kaon
projection to spectrometer
≈ 0 for two body decay,       
> 0 for Ke3, Kµ3

•  p1-p2  / p1+p2  < min (0.62,1.08-
0.0052 EK) [ ⇔ cut on cos(Θ∗) , 

reduces acceptance difference 
between KL and KS]

KS → π+π- :   no background
KL → π+π- :   BR = 0.2%
Backgrounds : Ke3(BR=39%),
Kµ3 (BR=27%)

π+π- selection

• Center of gravity RCOG ≤ 10 cm
Kaon impact point extrapolated to the 
calorimeter   COMMON WITH πOπO
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π+π- mass resolution
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Signal and background 
in M+-– P⊥’2 plane 

•Study background 
with inverted cuts,

•and fit it in KL 
sample,

•together with 
signal shape from 
KS sample
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π+π- background subtraction
In the signal region (Mππ and 
P⊥′2 cuts), the background is 
due to Ke3, Kµ3 
and a smaller fraction of 
collimator scattered Kaons 
(partially asymmetric in π+π- and 
πoπo)

Background = (16.9 ± 3.0) 10-4

(systematic error : 
•changes in control regions, 
•modeling of  P⊥′2 shape)
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Trigger

π0π0 trigger
• Based on LKr information 

summed into projections
• Cuts on total energy, decay 

vertex and number of photons
• Fully pipelined (3µs), no dead-

time, 2kHz
• Efficiency (99.920±0.009) % 

(from auxiliary trigger)
• Negligible KS to KL(weighted)

difference
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Neutral reconstruction
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The neutral reconstruction is based on 
• showers energies and positions, 
• the Z decay vertex follows assuming MK as total invariant mass
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π0π0π0 background subtraction
KS → π0π0 :   no background
KL → π0π0 :   BR ≈ 0.09%
Background : KL→ 3 π0 (BR≈21%)

TO REDUCE THE BACKGROUND:
• after assuming MK invariant mass 
for the 4 showers
• at a corresponding decay vertex 
Zdecay
• the showers can be further 
paired, at the same Zdecay, 
reproducing twice the π0 mass
⇒study a χ2 distribution (2 d.o.f.,  
mass resolution ≈ 0.9 MeV)

To reduce the background 
further: 

veto events  with additional
in-time clusters
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π0π0π0 background subtraction
Estimate residual background 
under KL signal using control
region in χ2. 
(3π0 background is ≈ flat) 
π0π0 contribution in control 
region from resolution tails is
derived from KS  events.

Background = (5.9 ± 2.0) 10-4

(systematic error : uncertainty in 
background extrapolation)

Additional π0π0 background due 
to collimator scattering:

(9.6 ± 2.0) 10-4



tagger

hodoscope

LKr calorimeter
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Tagging coincidence

∆t (Kaon-proton)
≤ 2 ns   ⇒ KS
> 2 ns   ⇒ KL

4 ns
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Two possible kinds of mistake :

–KS mistagged as KL : probability αSL
[inefficiency in time measurement by tagger counter or main 
detector (=trigger hodoscope or calorimeter): αSL

+- and αSL
oo ]

–KL mistagged as KS : probability αLS
[accidental coincidence between KL decay and a proton in the tagger
(rate 30 MHz)  - αLS

+- and αLS
oo - approximately symmetric 

between π+π- and π0π0 because of simultaneous data taking]

αSL
+- and αLS

+- can be measured reconstructing 
the decay vertex with the tracking chambers

Tagging errors
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Tagging performance for π+π- events

αSL = (1.63 ± 0.03) 10-4

αLS = (10.649 ± 0.008)%+-
+-

Hodoscope 
- tagger

Identify KS, KL with decay vertex 
position in transverse plane
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Tagging errors

• The measurement of R is mostly affected by the 
asymmetries in tagging errors:

∆αSL = αSL
oo - αSL

+-

∆αLS = αLS
oo - αLS

+-

• Correction to R :   ∆R ≅ 2 × ∆αLS − 6 × ∆αSL
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Measuring  ∆ αSL

Calorimeter – hodoscope• Compare the time provided by 
calorimeter and hodoscope in 
events where both are 
available:

1. Dalitz decays of π0

2. γ conversions in vacuum 
window
• Tails < 0.5×10-4

⇒Therefore most of the tails in              
π+π- tagging coincidence are due 
to the tagger

⇒ they are equal in π+π-

and π0πo

⇒ ∆αSL = (0. ± 0.5) 10-4
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Measuring  ∆ αLS

�αLS comes from accidental 
coincidences 

�⇒ measure ∆αLS using 
coincidence rate in tagging 
windows offset from the 
event time (“sidebands”)

This is done for events tagged as
KL (no proton in central window), 
and allows π+π- / π0π0 comparison

Closest proton

All protons
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Summary on tagging
• Data corrected for tagging mistakes
• Error on R ⇔ π+π- − π0π0  difference

∆(R) (in 10-4 units)
KS tagging inefficiency
αSL = 1.6 × 10-4

∆αSL = ( 0. ± 0.5 ) 10-4 0.  ± 3.
KL accidental mistagging 
αLS = ( 10.649 ± 0.008 ) % 
∆αLS = ( 4.6 ± 1.7 ) 10-4 8.3  ± 3.4

Total                                   8.3  ± 4.5

+-

+-
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Fiducial volume definition

The event samples are selected applying cuts on the 
reconstructed kaon energy and the decay vertex 
position:
70 ≤ EK ≤ 170 GeV, 
0 < τ < 3.5 (proper decay time:

τ = 1/CτKS (zvertex-z0) MK / EK )

The control of the boundaries of the fiducial volume 
is of major relevance, good control of:
•vertex computation, 
•scale and linearity of the energycomputation.
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Energy and decay vertex computations

π+π-

• zvertex from track segments 
upstream of magnet

⇒ Computation based on 
spectrometer geometry

π+π-

• zvertex from track segments 
upstream of magnet

⇒ Computation based on 
spectrometer geometry

Detector geometry
• Z positions known to ≅ 1 mm
• Transverse size scale known 
to:

• spectrometer ≅ 100 µm/m
• LKr ≅ 300 µm/m   
(after cool down)

Detector geometry
• Z positions known to ≅ 1 mm
• Transverse size scale known 
to:

• spectrometer ≅ 100 µm/m
• LKr ≅ 300 µm/m   
(after cool down)

π0π0
• D(LKr-vertex)=1/MK√(ΣijEiEjdij

2)
=  (Energy scale) 
× (Transverse size scale)

π0π0
• D(LKr-vertex)=1/MK√(ΣijEiEjdij

2)
=  (Energy scale) 
× (Transverse size scale)

Energy scale
•adjust energy scale to fit the 
known position of the AKS 
anticounter 
1 cm of reconstruction error 
⇒ 1×10-4 on energy scale 

Energy scale
•adjust energy scale to fit the 
known position of the AKS 
anticounter 
1 cm of reconstruction error 
⇒ 1×10-4 on energy scale 
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Reconstruction of AKS position

π0π0 : Adjust energy scale to 
match nominal position
(one factor, independent of energy)
Stability with time better than 
± 5×10-4

π+π- : Check of geometry and 
reconstruction 
⇒ ∆(z) = 2 cm
⇒ ∆(R) = (2 ± 2) 10-4
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Summary on Decay Region Definition
∆(R) (in 10-4 units)

π+π-

AKS position                          ± 2.0
Non gaussian response           ± 2.0

Total ± 2.8

π0π0

Energy scale                                 ± 2.0
Non linearities                              ± 3.8
Transverse size                            ± 2.5
Non uniformities                           ± 1.5
Non gaussian response             ± 1.2
Others  (energy sharing …)                 ± 2.3

Total ± 5.8
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Lifetime Weighting

(subsample)

At any given z: 
acceptance KS ≅ acceptance KL . 

But KS and KL have very 
different decay lengths

τ KL ≈ 600 × τ KS
⇒ different integrated acceptance 

for KS and KL and large correction 
on R

solution: weight KL events with
W = e - z/ (β γ c) ( 1/ τS - 1/ τL ) 

⇒ same decay vertex distribution
for KS and weighted KL 

⇒ same illumination of detector 
by decay products

Acceptance correction cancels at 
the price of an increase of the 
statistical error by factor ≅1.4

At any given z: 
acceptance KS ≅ acceptance KL . 

But KS and KL have very 
different decay lengths

τ KL ≈ 600 × τ KS
⇒ different integrated acceptance 

for KS and KL and large correction 
on R

solution: weight KL events with
W = e - z/ (β γ c) ( 1/ τS - 1/ τL ) 

⇒ same decay vertex distribution
for KS and weighted KL 

⇒ same illumination of detector 
by decay products

Acceptance correction cancels at 
the price of an increase of the 
statistical error by factor ≅1.4

(subsample)
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Detector illumination

After weighting, the illuminations are equal for KL and KS
(apart from limited effect in charged decays due to beam angles)
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Acceptance Correction

• Acceptance correction :    
+26.7 × 10-4

• Uncertainties on R :
– MC stat error : ± 4.1×10-4

– Systematic error :
± 4.0×10-4 due to:
• beam positions and 

shapes: ± 3.3×10-4

• Comparison of fast MC 
with GEANT based 
spectrometer simulation: 
± 2.3×10-4



Corfu 2001 NA48 / 43

Accidental Activity

Event losses cancel accurately in R because of 
simultaneous data taking in four modes
Event losses cancel accurately in R because of 
simultaneous data taking in four modes

Residual effect:   ∆ R ≈ ∆ ( π0π0 - π+π- ) × ∆ ( KL-KS )

∆( π0π0 - π+π- ) minimized by applying dead time conditions 
to all modes   (accidental losses ≅ 1 – 2 %, studied with random 
events overlaid with data and Monte Carlo)

∆( KL-KS ) small because KL and KS events see the same 
accidental activity, within 1% (checked directly with data),  
and because lifetime weighting produces equal detector 
illumination for KLand KS events

Correction to  R : ∆ R = ( 0 ± 4.4 ) ×10-4
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Summary of corrections and systematic errors

∆(R) (in 10-4 units)

background   1.4   ± 4.1
tagging errors  8.3  ± 4.5
geometrical/energy scale, linearity  2.0  ± 6.4
trigger/AKS efficiency -2.5  ± 5.2
acceptance correction   26.7  ± 6.2
accidental losses ± 4.4 

Total     35.9  ± 12.6

Some uncertainties include a statistical component (trigger efficiency,
tagging, acceptance …), contributing about ± 8 to the total error above
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Energy spectrum

Event statistics :
• KL → π0π0 :  3.29 ×106

• KS → π0π0 :  5.21 ×106 

• KL → π+π- : 14.45 ×106

• KS → π+π- : 22.22×106
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Data Analysis

• Measure R in Kaon energy bins (5 GeV wide) 
⇒ insensitive to KS−KL difference in energy

spectrum
• Apply lifetime weighting to KL
• Record dead time conditions

• 1.5% from π+π- trigger
• 21.5% from drift chamber multiplicity limit

and apply them offline to πoπo too ⇒ Minimize
effect of KS−KL beam intensity difference
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Result and systematic checks
R = 0.99098 ± 0.00101stat ± 0.00126syst
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Result

From (1-R)/6, we determine from  98  and  99  data :
ε’ / ε = ( 15.1 ± 2.7 ) 10-4

Combining with 97 result (18.5 ± 7.3) 10-4 :

ε’ / ε = ( 15.3 ± 2.6 ) 10-4

Direct CPV is established at 5.9 σ, and, with some 
algebra, we could say:

From (1-R)/6, we determine from  98  and  99  data :
ε’ / ε = ( 15.1 ± 2.7 ) 10-4

Combining with 97 result (18.5 ± 7.3) 10-4 :

ε’ / ε = ( 15.3 ± 2.6 ) 10-4

Direct CPV is established at 5.9 σ, and, with some 
algebra, we could say:
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New results from Fermilab

The KTeV collaboration has just 
presented new results:

1. Re-analysis of 96-97 partial sample, 
published in 1999, now with revised 
result

2. Result of the analysis of the 
remaining 1997 sample

The KTeV collaboration has just 
presented new results:

1. Re-analysis of 96-97 partial sample, 
published in 1999, now with revised 
result

2. Result of the analysis of the 
remaining 1997 sample
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Decay identification by vertex  (π+π- )
and CoG in calorimeter (π0π0)
Similar P but different Z spectra for L/S

KTeV technique
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KTeV new results

1. Revised result: ε’/ε = (23.2 ± 4.4)×10-4         

it was: (28.0 ± 4.1)×10-4

(-1.7 due to mistake; remaining: better corrections)

2. New sample : ε’/ε = (19.8 ± 2.9)×10-4

3. KTeV new average: ε’/ε =(20.7± 2.8)×10-4,        
or namely:

(20.7 ± 1.5(stat) ± 2.4(syst) ± 0.5(MC stat))×10-4

The main systematic errors include energy scale/linearity, 
neutral background, and acceptance. 

[The acceptance correction to R is about: (≈480±7)×10-4 , 
vs. NA48’s: (27±6) ×10-4]
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Experimental results comparison

Total average :  ε’ / ε = ( 17.3 ± 1.8 ) 10-4

with χ2/ndf  = 5.7/3
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Conclusions

• The average of the 4 last experiments 
(NA31, E731, KTeV and NA48) is:

ε’/ε = (17.3 ± 1.8) × 10-4

(weighted average, with χ2/ndf = 5.7/3)

•This is a very significant improvement 
in resolution and consistency of results 
over 2 and 8 years ago

•Direct CP violation is established, and the 
experimental precision is challenging the 
computational accuracy of the Standard Model
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