The Muon Spectrometer of the ATLAS Experiment

Sandro Palestini CERN, CH Geneva

8th Topical Seminar on Innovative Particle and Radiation Detectors Siena 21-24 October 2002 • Quick overview

- Layout
- Background rates and muon rates
- (some) Physics goals
- Muon spectrometer magnets
- Muon 1st Level Trigger and trigger chambers
 - Trigger concept and trigger rates
 - RPC chambers
 - TGC chambers
- Precision chambers
 - CSC chambers
 - MDT chambers
 - Quality control at Tomograph
 - Alignment of precision chambers
 - Alignment test: set-up and preliminary results
 - Some results from operation at high background rate
- Spectrometer resolution and impact on Physics

Layout of muon spectrometer

Expected background

Rates in muon chambers

Muon signal rate

Standard Model Higgs search

Some comments:

M_u<170 GeV • γγ muons only via associated prod of t, W, Z for triggering purposes. Little relevance however for total significance •ttH->tt bb muon in triggering and backgr reduction, vertex relevant •ZZ(*)->41 muons relevant in trigger and ID, resolution not exploited for this mass range •WW-> lv lv trigger and backgr. •W*->W(*)H->WWW(*) -> 6 lv as above (not too relevant) M₁₁>180 GeV •ZZ->41 main discovery channel, muons for trigger and mass reolution (MH>200 GeV), low background •WW->jjlv, ZZ->llvv, ll jj complementary, as above

Furthermore:

- $qqH \rightarrow qq\tau\tau$ (M_H=110-130)
- qqH \rightarrow qqWW(*) (M_H=130-190)

Siena, 24/10/2002

S. Palestini

MSSM Higgs bosons h, H, A, H ±

Siena, 24/10/2002

Barrel toroid

0.5-2 T 2-4 Tm

- Components manufacturing
 - Superconductor: completed
 - Pancake coils: 13/16
 - Coil casings: 4/8
 - Vacuum vessels: 4/8
 - Tie rods 8/64
 - Stops 64/256
 - Superinsulation 2/8
 - Shield 0/8

EndCap toroids

1-2 T, 3-8 Tm

First level trigger in Muon Chambers

Trigger efficiency and rates

Siena, 24/10/2002

Trigger chambers In Barrel:

Resistive Plate Chambers

Siena, 24/10/2002

S. Palestini

RPC production

- gas volumes produced by industry
- other components, assembly and test in collaborating institutes
- about 25% of gas volumes produced so far
- additional tests in high radiation background started recently (together with CMS etc.):
 - check production line chambers for aging,
 - develop gas purification procedure in order to use gas recirculation

TGC construction

carbon spray (for cathode plane) parts gluing (for gas volume) wire winding TGC closing unit gluing readout assembly (HV test incl.)

TGC production status

- Israel (Weizmann): 30% built, out of 60% planned
- Japan (KEK): 15% built, out of 30% planned
- China (Shandong), production of planned 10% just started

Precision Chambers

MDTs:

- Barrel |η| <1
- End-cap 1< |η| <2.7
- 1163 chambers
- ~370000 channels
- 5500 m²

CSCs:

- 2< | η | <2.7 (inner station)
- 32 chambers
- ~ 67000 channels
- 27 m²

CSC chambers

Main precision chambers: Monitored Drift Tubes

Drift tubes and multi-layers

Tube diameter: 30 mm (walls 0.4 mm Al), wire 50 μ m Operated at 3 bar, G = 2.10⁴

Layer assembly gig

Multi-layer assembly

Siena, 24/10/2002

MDT production status

- Production planned in 13 sites (collaborating institutes or consortia of institutes) (9 in Europe, 3 in USA, 1 in Asia)
- 11 sites operating
- ~35 % of chambers produced (mechanics) (15 % complete with gas distribution and some other services)

MDT Production (all sites)

Quality control with the *Tomograph Facility* at CERN

Scan direction 4000 LITEL 4100 LITEL 1290

- •Measure the cross sections of a chamber near the end-plugs (verify assembly accuracy),
- and near middle plane (measure wire sag)
 Help production sites in reaching optimal assembly procedure

Fitted rms: residuals referred to chamber parameters (e.g.: wire pitch, multi-layer separation) determined for each production site

Alignment system

- An accurate alignment ($\sim 30 \ \mu m$) is necessary not to affect the performance of the spectrometer
- An accurate monitor of chamber and spectrometer geometry is needed
- Limited use can be made of magnet-off muon data, since the spectrometer geometry is expected to vary on mm scale when turning on the B field

Use an alignment system, based on optical element, capable of reconstruction and monitor of the geometry of the spectrometer

Alignment in Barrel

• RASNIK: determine the relative position of a lens between a CCD and a target mask

RASNIK typical parameters: Each square 120x120 μm² CCD pixel 7x7 μm²

Intrinsic precision on transverse position few μm

Alignment in EndCap

- To avoid the need of too many projective lines, with many holes in the EC cryostat:
 - Less projective (polar) lines (2-3 per sector)
 - Intermediate reference system based on monitored alignment bars connected to MDTs via proximity monitors

Realistic Test of alignment in one barrel tower, and of one EC sector

Also integration test of detectors, r/o and DAQ, services, DCS, software development and integration

S. Palestini

S. Palestini

Preliminary (partial) results from EC alignment test

Additional view line (muon simulator)

Fake sagitta from EC alignment system

Residual: ~33µm rms *PRELIMINARY*

Siena, 24/10/2002

S. Palestini

Preliminary results from Barrel Alignment test

• Displacement of one chamber from middle station, along supporting rail, comparing data from track reconstruction and from alignment system

> Residuals < 10 μm PRELIMINARY

Tests at the CERN Gamma Irradiation Facility

- Photons < 1 MeV with rates exceeding LHC rates for muon detectors
- Muon Beam also available

• Here report on some results with MDT chambers

Single-Tube Resolutions

Comparison of the superpoint resolutions

Multi-layer resolution at high rate: $40 - 90 \ \mu m \ (3080 \ V)$

At low rate: $40 - 60 \mu m$

(tracks normal to chamber)

S. Palestini

Resolution Curves for $Ar/CO_2(80/20)$ at 1 bar

Spectrometer resolution

Remark: trigger chambers provides 2nd coordinate to MDTs, relevant for reconstruction and optimal resolution

Efficiency and resolution in 2 / 4 muons channels

Siena, 24/10/2002

S. Palestini

Special thanks for contributing material for this presentation to:

Ch. Amelung, S. Braccini, F. Cerutti, C. Guyot, K. Ishii,

O. Kortner, D. Pomarede, R. Perrino, A. Schricker,

S. Schuh, H. Ten Kate, I. Trigger, S. Zimmermann